AREA AND CIRCUMFERENCE OF CIRCLES

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

22	0.5	P1 P1 P1 P1 A1	derive an algebraic expression for the area of A eg $\frac{1}{8} \pi\left[(5 x-1)^{2}-(3 x-1)^{2}\right]$ expand and simplify for either area A or area B eg $\frac{1}{8} \pi\left(16 x^{2}-4 x\right)$ or $\pi\left(x^{2}-2 x+1\right)$ (dep P2) equate and rearrange into a quadratic eqn of the form $a x^{2}+b x+c=0$ eg $2 x^{2}+3 x-2=0$ (dep P3) factorise eg $(2 x-1)(x+2)=0$ or use of formula eg $\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times-2}}{2 \times 2}$ oe	Accept only the single value of 0.5 oe but award 0 marks for a correct answer with no supportive working

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

2.

*11			No supported by working	4	M1 for $\pi \times 7$ (= 21.9 to 22) or $\pi \times 7 \times 2.54=(55.5$ to 56$)$ M1 (dep) for a complete method that could lead to two figures that are comparable eg $\pi \times 7 \times 2.54 ; \pi \times 7$ and $50 \div 2.54$ A 1 for correct comparable figures eg 55.5 to $56(\mathrm{~cm})$; 21.9 to $22(\mathrm{in})$ and 19.6 to 19.7 (in) C 1 (dep M2) for a correct conclusion based on their comparable figures OR M1 for eg $50 \div \pi(=15.9$ to 15.92$)$ or $50 \div 2.54 \pi(=6.26$ to 6.27$)$ M1 (dep) for a complete method that could lead to two figures that are comparable eg $(50 \div \pi) \div 2.54 ; 50 \div \pi$ and 7×2.54 A1 for correct comparable figures eg 6.26 to 6.27 (in); 15.9 to $15.92(\mathrm{~cm})$ and 17.7 to $17.8(\mathrm{~cm})$ C 1 (dep M2) for a correct conclusion based on their comparable figures

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier
3.

4			28.3	2	M1 for $\pi \times 9$ or $2 \times \pi \times 4.5$ oe A1 for $28.25-28.3$

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

4.

| 12 | 440 | 2 | M1 for $140 \times \pi$ oe or 439
 A1 for $439.6-440$ |
| :--- | :--- | :--- | :--- | :--- |

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier
5.

5		$\pi \times 5 \times 1.80$	28.27	3	M1 for use of $\pi \times x($ with $x=5$ or $x=2.5)$ or $2 \times \pi \times x($ with $x=5$ or $x=2.5)$ M1 for $\pi \times 5 \times 1.8(0)$ or $2 \times \pi \times 2.5 \times 1.8(0)$ A1 for 28.26 or 28.27 or 28.28 or $28.3(0)$ or $28.8(0)$

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier
6.

8	(a)	$\pi \times 6 \times 2$	37.7	2	M1 for $\pi \times 12$ or $\pi \times 2 \times 6$ A1 for $37.6-37.8$
(b)	$(100 \div 12) \times(50 \div 12)=8 \times 4$ whole CDs		26		B2 for $33,34,35,36$ or M1 for $(100 \div 12) \times(50 \div 12)$ oe or 8×4 A1 for 32 SC : B1 for 44

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier
7.

5	$\pi \times 10^{2}$	314	2	M1 for $\pi \times 10^{2}$ oe or 3.14×10^{2} oe or 100π A1 for 314 oe

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier
8.

7	$\pi \times 12$	37.7	2	$M 1$ for $\pi \times 12$ accept π as $\frac{22}{7}$ or 3.1 or better A1 for an answer in the range 37.6 to 37.8

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

9.

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier
10.

16	(a)	[angle in a] semi-circle oe	1		Accept other reasoning if fully justified
	(b)	13.5 to 13.6	4	B1 for angle BAC $=58^{\circ}$ or angle $\mathrm{ABC}=32^{\circ}$ M2 for $16 \sin ($ their 58) or $16 \cos$ (their 32) or M1 for $\sin ($ their 58$)=\frac{B C}{\text { their } 16}$ or $\cos ($ their 32$)=\frac{B C}{\text { their } 16}$ or better If $\mathbf{0}$ or $\mathbf{B 1}$ scored then instead award SC2 for 6.7 to 6.8 as final answer Grads or rads: If $\mathbf{0 , 1}$ or $\mathbf{2}$ scored then instead award SC3 for $15.8[8 \ldots$] to 15.9 or 12.6 [$4 \ldots$] as final answer or If 0 scored award SC1 for $7.9[4 \ldots]$ or $6.3[2 \ldots]$	May be seen on diagram or implied by use of $\sin 58$ or $\cos 32$ Only award M marks if their angle and trig ratio are consistent ie do not accept $16 \sin 32$ unless angle BAC previously seen as 32 .

OCR GSCE - Thursday 24 May 2018 - Paper 4 (Calculator) Higher Tier

11.

8			145.2 to 146.2	5	B1 for angle CBD = 28 soi or for angle $\mathrm{BCD}=90$ soi and M2 for $\frac{6.4}{\sin 28}$ oe or $13.6[3 \ldots]$ nfww or M1 for $\sin [28]=\frac{6.4}{[. .]}$ oe and M1 for $\pi \times(\text { their radius })^{2}$	B1 implied by e.g. 28 or 62 correctly used in trigonometry or 28,62 or 90 (or symbol) marked in the correct place in the diagram 13.6... can imply B1 however if it is marked on the wrong side,e.g. on AC, then it scores 0 marks

OCR GSCE - Thursday 8 June 2017 - Paper 5 (Non - Calculator) Higher Tier

12.

$\mathbf{1 6}$	(a)	104 $\frac{\text { Angle at centre is twice angle at }}{\text { circumference }}$	$\mathbf{2}$	B1 for 104	With no incorrect statement Must use underlined terms. Accept reverse: angle at circumference is half angle at centre Accept arc for circumference but not edge
(b)	128 Opposite angles in a cyclic quadrilateral [are supplementary oe]	$\mathbf{2}$	B1 for 128	With no incorrect statement Must use underlined terms Condone opp angles in cyclic quad $=$ 180	

OCR GSCE - Sample Papers - Paper 5 (Non - Calculator) Higher Tier
13.

| 12 | | $\frac{2}{3}$ | $\mathbf{3}$
 1 AO1.3a
 1 AO3.1b
 1 AO3.2 | B1 for radius of large circle $=3 \times$
 radius of small circle
 M1 for $\frac{9 \pi r^{2}-3\left(\pi r^{2}\right)}{9 \pi r^{2}} \mathbf{0 e}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AQA GSCE - Tuesday 19 May 2020 - Paper 1 (Non - Calculator) Higher Tier
14.

12(b)	Alternative method 1		
	$2 \times \pi \times 21 \text { or } \pi \times 42$ or 42π or [131.88, 132]	M1	oe condone [3.14, 3.142] for π
	$2 \times \pi \times 6 \div 4$ or $\pi \times 12 \div 4$ or 3π or [9.4, 9.43]	M1	oe arc length of quarter circle condone [3.14, 3.142] for π
	$2 \times \pi \times 6 \div 4+2 \times 6$ or $3 \pi+12$ or [21.4, 21.43]	M1dep	oe dep on 2nd M1 this does not imply M1M1M1
	$45 \pi+12$	A1	
	Alternative method 2		
	$2 \times \pi \times 21 \text { or } \pi \times 42$ or 42π or [131.88, 132]	M1	oe condone [3.14, 3.142] for π
	$2 \times \pi \times 21 \text { and } 2 \times \pi \times 6 \div 4$ or 42π and 3π or $2 \times \pi \times 21+2 \times 6 \text { or } 42 \pi+12$ or [143.88, 144]	M1dep	$\begin{aligned} & \text { oe eg } 42 \pi \text { and }[9.4,9.43] \\ & \text { or }[131.88,132] \text { and } 3 \pi \end{aligned}$
	$2 \times \pi \times 21+2 \times \pi \times 6 \div 4$ or $42 \pi+3 \pi$ or 45π or [141, 141.43] or [153, 153.43]	M1dep	oe eg $42 \pi+[9.4,9.43]$ or $[131.88,132]+3 \pi$
	$45 \pi+12$	A1	

$\begin{aligned} & \text { 12(b) } \\ & \text { cont } \end{aligned}$	Additional Guidance	
	Condone $3(15 \pi+4)$	M1M1M1A1
	Condone, for example, J 42 for up to M1M1M1	
	$21 \pi+3 \pi+12$	M0M1M1A0 on alt 1
	$441 \pi+3 \pi+12$	M0M1M1A0 on alt 1
	$42 \pi+36 \pi+12$	M1M1M0AO on alt 2
	$441 \pi+36 \pi+12$	MOMOMOAO
	Using πr^{2} instead of $2 \pi r$ throughout	MOMOMOAO
	$45 \pi+12$ in working with incorrect further work, eg $45 \pi+12=57 \pi$	M1M1M1A0

AQA GSCE - Thursday 8 June 2020 - Paper 3 (Calculator) Higher Tier
15.

Q	Answer	mark	Comm	
21(a)	$\begin{aligned} & \text { Angle } A B P=71 \\ & \text { or } \\ & 180-2 \times 71 \\ & \text { or } \\ & 180-142 \\ & \text { or } \\ & (180-90-71) \times 2 \end{aligned}$	M1	oe may be marked on diagram in correct position	
	38	A1		
	Additional Guidance			
	71 or 38 in working with either angle correctly identified, 180 on answer line			M1A0
	71 or 38 in working with neither angle correctly identified, 180 on answer line			MOAO

Q	Answer	Mark	Comments
21(b)	Alternative method 1		
	(Angle CXD $=$) 360-204 or 156	M1	may be marked on diagram in correct position
	$156 \div 2=78$ and $Y e s$ or $78 \times 2=156$ and $Y e s$	A1	
	Alternative method 2		
	(Angle $C X D=$) $78 \times 2=156$	M1	may be marked on diagram in correct position
	$204+156=360$ and $Y e s$ or $360-156=204$ and Yes	A1	
	Additional Guidance		
	Angle $C X D$ should be double angle		MOAO

16.

$\mathbf{3}$	6π	B1	

AQA GSCE - Tuesday 21 May 2019 - Paper 1 (Non - Calculator) Higher Tier

17.

AIternative metnod 1: areas		
$\pi \times 10^{2}$ or 100π	M1	implied by [314, 314.2]
$\pi \times(8 \div 2)^{2}$ or $\pi \times 4^{2}$ or 16π or $\pi \times(8 \div 2)^{2} \div 2$ or $\pi \times 4^{2} \div 2$ or $16 \pi \div 2$ or 8π	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92π or 84π or $92: 8$ or $8: 92$ or $84: 16$ or $16: 84$ implies M1M1
(their $100(\pi)$ - their $8(\pi)) \div$ their $8(\pi)$ or $92(\pi) \div 8(\pi)$ or their $100(\pi) \div$ their $8(\pi)(-1)$	M1dep	dep on M2 absence of π must be consistent condone $16(\pi)$ as their $8(\pi)$ in first or $12 \frac{1}{2}(-1)$ or $12.5(-1)$ (their $100(\pi)-$ their $16(\pi)) \div$ their $16(\pi)$ or $84(\pi) \div 16(\pi)$, but not their $100(\pi) \div$ their $16(\pi)(-1)$
$11 \frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$

9
Alternative method 2: scale factor

$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$	M1	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4 or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5 π may be present, but must be consistent 5 or $5: 2$ oe ratio in numerator and denominator		
(their $\left.\frac{5}{2}\right)^{2}$ or $\frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$ accept $4: 25$ or $25: 4$ oe ratio		
$2 \times$ their $\frac{25}{4}(-1)$ or $\frac{25}{2}(-1)$	M1dep	oe eg $2 \div$ their $\frac{4}{25}(-1)$	\quad	or $12 \frac{1}{2}(-1)$ or $12.5(-1)$
:---				
$11 \frac{1}{2}$ or 11.5				
Additional Guidance is on the following page				

$\begin{gathered} 9 \\ \text { (cont) } \end{gathered}$	Additional Guidance	
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π	
	An answer of 11.5π with no incorrect working	M1M1M1A0
	Consistent use of πd^{2} for the area of a circle gives the area of the circle as 400π, the area of the semicircle as 32π and the area of the shaded part as 368π. This also gives the answer 11.5 , but scores zero	MOMOMOAO
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area eg 1 Big area $=100 \pi$, little area $=8 \pi$, big circumference $=20 \pi$, little circumference $=4 \pi, 20 \div 4=5$ eg 2 $100 \pi, 8 \pi, 20 \pi, 4 \pi$	M1M1M0A0 MOMO
	Do not award the second mark if the value of 8π comes from πd This is implied by, eg, 'Area of circle $=20 \pi$, area of semi-circle $=8 \pi^{\prime}$	M?M0 MOM0
	$\frac{100(\pi)-16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0

AQA GSCE - Tuesday 6 November 2018 - Paper 1 (Non - Calculator) Higher Tier
18.

| Alternative method 1 M1
 angle $Q P R=27$ may be seen on diagram
 angle $X P S=\frac{180-50}{2}$ or 65 may be seen on diagram
 angle $Q P R=27$
 and
 angle $X P S=65$
 and
 angle $Q P S=92$
 and
 angle in a semicircle is a right angle A1 oe accept $92 \neq 90$
 all reasons for angle facts:
 angles in same segment (are
 equal)
 and
 angle sum of triangle (is 180)
 and
 base angles of isosceles triangle
 (are equal) A1 oe oe | oe |
| :---: | :--- | :--- | :--- |

20 cont	Alternative method 2		
	```angle SXR=180-50 or 130 and angle XRS = 180 - their 130-27 and angle PQS = their 23```	M1	may be seen on diagram angle $X R S=23$
	$\text { angle } X S P=\frac{180-50}{2} \text { or } 65$	M1	may be seen on diagram
	```angle SXR = 130 and angle XRS = 23 and angle PQS = 23 and XSP = 65 and angle QPS =92 and angle in a semicircle is a right angle```	A1	oe accept $92 \neq 90$
	all reasons for angle facts: angles on a straight line (add up to 180) and angle sum of triangle (is 180) and angles in same segment (are equal) and base angles of isosceles triangle (are equal)	A1	oe oe oe oe

AQA GSCE - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier
19.

5	Pi or π	B1	accept a value in range [3.14, 3.142]
	Additional Guidance		
	Accept incorrect spelling if intention is clear eg accept pie	B0	
	Answer $(C=) \pi d$	B1	
	Answer $(C=) \pi d \quad(k=) \pi$		

AQA GSCE - Monday 24 May 2018 - Paper 1 (Non - Calculator) Higher Tier
20.

18	$\pi \times 10^{2}-\pi \times 7^{2}$ or $100 \pi-49 \pi$ or 51π or $\frac{1}{2} \times \pi \times 10^{2}-\frac{1}{2} \times \pi \times 7^{2}$ or $\frac{1}{2} \times 100 \pi-\frac{1}{2} \times 49 \pi$ or $\frac{1}{2} \times 51 \pi$ or 25.5π	M1	oe implied by 102π method to work out front and/or back faces - must not be part of a method to work out volume ($\times 30$) may be taken to be full circles	
	$2 \times \pi \times 10 \times 30$ or 600π or $\frac{1}{2} \times 2 \times \pi \times 10 \times 30$ or 300π or $2 \times \pi \times 7 \times 30$ or 420π or $\frac{1}{2} \times 2 \times \pi \times 7 \times 30$ or 210π or 1020π or 510π	M1	oe method to work out outer and/or inner curved surfaces may be taken to be full circles 1122π implies M1M1	
	$\begin{aligned} & \left(\frac{1}{2} \times \pi \times 10^{2}-\frac{1}{2} \times \pi \times 7^{2}\right) \times 2 \\ & +\frac{1}{2} \times 2 \times \pi \times 10 \times 30 \\ & +\frac{1}{2} \times 2 \times \pi \times 7 \times 30 \end{aligned}$ or $2 \times 25.5 \pi+300 \pi+210 \pi$ or 561π	M1dep	oe dep on M1M1 correct method to work out total of front, back, outer curved and inner curved surfaces	
	$2 \times 30 \times 3$ or 180	M1	implied by an answer of $n \pi+180$ do not award if 180 is used as 180π	
	$561 \pi+180$	A1		
	Additional Guidance			
	150π and 105π implies use of radius for curved surface areas			max M1M0M0M1AO
	Condone use of [3.14, 3.142] for π up to M1M1M0M1A0			

AQA GSCE - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier
21.

1	segment	B1		
	Additional Guidance			

AQA GSCE - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier
22.

10	Alternative method 1		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or }[112757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or }[55954,56839] \end{aligned}$	M1	oe allow $1.33 \ldots$ for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	their [112 757, 113 112] +4000 or 9π or $28 .(\ldots)$ or their [55 954, 56839$] \div 4000$ or $\frac{9 \pi}{2}$ or [13.9, 14.21] or their [112 757, 113 112] $*(4000 \times$ $60)$ or $\frac{3 \pi}{20}$ or $[0.46,0.4713]$ or their $[55954,56839] \div(4000 \times 60)$ or $\frac{3 \pi}{40}$ or $0.23 \ldots$ or 0.24	M1dep	
	$\text { [13.9, 14.21] and } Y e s$ or 0.23... or 0.24 and Yes	A1	

$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or }[112757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or }[55954,56839] \end{aligned}$	M1	oe allow 1.33... for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	4000×15 or 60000	M1	
	[55 954, 56839] and 60000 and Yes	A1	
	Alternative method 3		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or }[112757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or }[55954,56839] \end{aligned}$	M1	oe allow 1.33... for $\frac{4}{3}$ allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
	```their [112 757, 113 112] + 15 or 2400\pi or [7517, 7541] or their [55 954, 56 839] * 15 or 1200\pi or [3730, 3790]```	M1dep	
	[3730, 3790] and Yes	A1	
		itional g	uidance
	Do not award A1 if incorrect conve	of $\frac{1}{4}$ ho	seen

AQA GSCE - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier
23.

12	$A D$	B 1		
	Additional Guidance			

AQA GSCE - Sample Paper 1 (Non - Calculator) Higher Tier
24.

21	angle $A B C=x$	M 1	
	angle $B A C=x$ and   alternate segment theorem	M 1	
	angle $A B C=x$ and   angle $B A C=x$ and   alternate segment theorem and   two equal angles so isosceles   $(A C=B C)$	A1	

