AREA AND CIRCUMFERENCE OF CIRCLES

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

0.5	P1	derive an algebraic expression for the area of A eg $\frac{1}{8}\pi$ [$(5x-1)^2 - (3x-1)^2$]	
	P1	expand and simplify for either area A or area B eg $\frac{1}{8}\pi (16x^2-4x)$ or $\pi(x^2-2x+1)$	
	P1	(dep P2) equate and rearrange into a quadratic eqn of the form $ax^2 + bx + c = 0$ eg $2x^2 + 3x - 2 = 0$	
	P1	(dep P3) factorise eg $(2x-1)(x+2) = 0$ or use of formula eg $\frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times -2}}{2 \times 2}$	
	A1	oe	Accept only the single value of 0.5 oe but award 0 marks for a correct answer with no supportive working
	0.5	P1 P1	eg $\frac{1}{8}\pi \left[(5x-1)^2 - (3x-1)^2 \right]$ P1 expand and simplify for either area A or area B eg $\frac{1}{8}\pi \left(16x^2 - 4x \right)$ or $\pi(x^2 - 2x + 1)$ P1 (dep P2) equate and rearrange into a quadratic eqn of the form $ax^2 + bx + c = 0$ eg $2x^2 + 3x - 2 = 0$ P1 (dep P3) factorise eg $(2x - 1)(x + 2) = 0$ or use of formula eg $\frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times -2}}{2 \times 2}$

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

2.

*11	No supported by working	 M1 for π × 7 (= 21.9 to 22) or π × 7 × 2.54 = (55.5 to 56) M1 (dep) for a complete method that could lead to two figures tha are comparable eg π × 7 × 2.54; π × 7 and 50 ÷ 2.54 A1 for correct comparable figures eg 55.5 to 56 (cm); 21.9 to 22 (in) and 19.6 to 19.7 (in) C1 (dep M2) for a correct conclusion based on their comparable figures OR M1 for eg 50 ÷ π (= 15.9 to 15.92) or 50 ÷ 2.54π (=6.26 to 6.27) M1 (dep) for a complete method that could lead to two figures tha are comparable eg (50 ÷ π) ÷ 2.54; 50 ÷ π and 7 × 2.54 A1 for correct comparable figures eg 6.26 to 6.27 (in); 15.9 to 15.92 (cm) and 17.7 to 17.8 (cm) C1 (dep M2) for a correct conclusion based on their comparable figures
-----	-------------------------	--

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

3.

	 1		i	
4		28.3	2	M1 for $\pi \times 9$ or $2 \times \pi \times 4.5$ oe
				A1 for 28.25 – 28.3

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

ı				
	12	440	2	M1 for $140 \times \pi$ oe or 439 A1 for $439.6 - 440$

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

5.

5	$\pi \times 5 \times 1.80$	28.27	3	M1 for use of $\pi \times x$ (with $x = 5$ or $x = 2.5$) or $2 \times \pi \times x$ (with $x = 5$ or $x = 2.5$)
				M1 for $\pi \times 5 \times 1.8(0)$ or $2 \times \pi \times 2.5 \times 1.8(0)$ A1 for 28.26 or 28.27 or 28.28 or 28.3(0) or 28.8(0)

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier

6.

8	(a)	$\pi \times 6 \times 2$	37.7	2	M1 for $\pi \times 12$ or $\pi \times 2 \times 6$ A1 for 37.6- 37.8
	(b)	$(100 \div 12) \times (50 \div 12) = 8 \times 4 \text{ whole CDs}$	36	2	B2 for 33, 34, 35, 36 or M1 for (100 ÷ 12) × (50 ÷ 12) oe or 8 × 4 A1 for 32 SC : B1 for 44

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

7.

5	$\pi \times 10^2$	314	2	M1 for $\pi \times 10^2$ oe or 3.14×10^2 oe or 100π A1 for 314 oe

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

8.

7	π×12	37.7	M1 for $\pi \times 12$ accept π as $\frac{22}{7}$ or 3.1 or better A1 for an answer in the range 37.6 to 37.8
			At for all answer in the range 37.0 to 37.0

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

9.

7	$\pi \times 5 \times 5$	78.5	2	M1 fo	or $\pi \times 5 \times 5$ (accept π as 3.1 or better)
				A1 fc	or 77.5 to 78.6 or 25π

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

16	(a)	[angle in a] semi-circle oe	1		Accept other reasoning if fully justified
	(b)	13.5 to 13.6	4	B1 for angle BAC = 58° or angle ABC = 32° M2 for 16sin(their 58) or 16cos(their 32) or M1 for $\sin(their 58) = \frac{BC}{their 16}$ or $\cos(their 32) = \frac{BC}{their 16}$ or better If 0 or B1 scored then instead award SC2 for 6.7 to 6.8 as final answer Grads or rads: If 0, 1 or 2 scored then instead award SC3 for 15.8[8] to 15.9 or 12.6[4] as final answer or If 0 scored award SC1 for 7.9[4] or 6.3[2]	May be seen on diagram or implied by use of sin58 or cos32 Only award M marks if their angle and trig ratio are consistent ie do not accept 16sin32 unless angle BAC previously seen as 32.

OCR GSCE – Thursday 24 May 2018 – Paper 4 (Calculator) Higher Tier

11.

8	145.2 to 146.2	5 B1 for angle CBD = 28 angle BCD = 90 soi	used in trigonometry or 28, 62 or 90 (or symbol) marked in the correct
		M2 for $\frac{6.4}{\sin 28}$ oe or 13.6	place in the diagram 13.6 can imply B1 however if it is
		or M1 for sin [28] = $\frac{6.4}{[]}$	marked on the wrong side,e.g. on oe AC, then it scores 0 marks
		and M1 for π × (<i>their</i> radius))2

OCR GSCE – Thursday 8 June 2017 – Paper 5 (Non - Calculator) Higher Tier

16	(a)	104 Angle at centre is twice angle at circumference	2	B1 for 104	With no incorrect statement Must use underlined terms. Accept reverse: angle at circumference is half angle at centre Accept arc for circumference but not edge
	(b)	Opposite angles in a cyclic quadrilateral [are supplementary oe]	2	B1 for 128	With no incorrect statement Must use underlined terms Condone opp angles in cyclic quad = 180

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

13.

12		2	3	B1 for radius of large circle = 3 ×	
		3	1 AO1.3a	radius of small circle	
			1 AO3.1b	2 2 2	
			1 AO3.2	M1 for $\frac{9\pi r^2 - 3(\pi r^2)}{2}$ oe	
				$9\pi r^2$	

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier

	$21 \div 7 \times 2 (= 6)$ or $21 \div 3 = 7$ and $6 \div 3 = 2$ or $21 \div 7 = 3$ and $6 \div 2 = 3$ or $7 \times 3 = 21$ and $2 \times 3 = 6$	B1	oe eg $6 \div 2 = 3$ and 7	× 3 = 21
	Ade			
	3 × 2 (= 6)	В0		
12(a)	7 : 2 (=) 21 : 6 with no other working		В0	
	7 : 2 (=) 21 : 6 with multiplication by 3 shown by arrow(s)			B1
	7 : 2 (=) 14 : 4 (=) 21 : 6		B1	
	Do not condone incorrect representat	В0		
	Do not condone incorrect mathematical representation eg 21 \div 7 = 3 \times 2 = 6			В0
	21 ÷ 6 = 3.5, 3.5 × 2 = 7			B1
	21 × 2 = 42, 42 ÷ 7 = 6			B1

	Alternative method 1					
	$2 \times \pi \times 21$ or $\pi \times 42$ or 42π or $[131.88, 132]$	M1	oe condone [3.14, 3.142] for π			
	$2 \times \pi \times 6 \div 4$ or $\pi \times 12 \div 4$ or 3π or $[9.4, 9.43]$	M1	oe arc length of quarter circle condone [3.14, 3.142] for π			
	$2 \times \pi \times 6 \div 4 + 2 \times 6$ or $3\pi + 12$ or [21.4, 21.43]	M1dep	oe dep on 2nd M1 this does not imply M1M1M1			
	45π + 12	A1				
12(b)	Alternative method 2					
	$2 \times \pi \times 21$ or $\pi \times 42$ or 42π or $[131.88, 132]$	M1	oe condone [3.14, 3.142] for π			
	$2 \times \pi \times 21$ and $2 \times \pi \times 6 \div 4$ or 42π and 3π or $2 \times \pi \times 21 + 2 \times 6$ or $42\pi + 12$ or $[143.88, 144]$	M1dep	oe eg 42π and [9.4, 9.43] or [131.88, 132] and 3π			
	$2 \times \pi \times 21 + 2 \times \pi \times 6 \div 4$ or $42\pi + 3\pi$ or 45π or [141, 141.43] or [153, 153.43]	M1dep	oe $eg \ 42\pi + [9.4, 9.43]$ or [131.88, 132] + 3π			
	45π + 12	A1				

Additional guidance for this question is on the next page

	Additional Guidance				
	Condone 3(15π + 4)	M1M1M1A1			
	Condone, for example, π42 for up to M1M1M1				
	$21\pi + 3\pi + 12$	M0M1M1A0 on alt 1			
12(b) cont	$441\pi + 3\pi + 12$	M0M1M1A0 on alt 1			
	$42\pi + 36\pi + 12$	M1M1M0A0 on alt 2			
	$441\pi + 36\pi + 12$	МОМОМОАО			
	Using πr^2 instead of $2\pi r$ throughout	момомоао			
	$45\pi + 12$ in working with incorrect further work, eg $45\pi + 12 = 57\pi$	M1M1M1A0			

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 15.

Q	Answer	Mark	Commer	nts	
21(a)	Angle ABP = 71 or 180 - 2 × 71 or 180 - 142 or (180 - 90 - 71) × 2	M1	oe may be marked on diagr position	ram in correct	
	38	A1			
	Additional Guidance				
	71 or 38 in working with either angle cline	M1A0			
	71 or 38 in working with neither angle correctly identified, 180 on answer line M0A0				

Q	Answer	Mark	Commen	its		
	Alternative method 1					
	(Angle CXD =) 360 – 204 or 156	M1	may be marked on diagr position	ram in correct		
	156 ÷ 2 = 78 and Yes					
	or	A1				
	78 × 2 = 156 and Yes					
24/6)	Alternative method 2					
21(b)	(Angle <i>CXD</i> =) 78 × 2 = 156	M1	may be marked on diagr position	ram in correct		
	204 + 156 = 360 and Yes					
	or	A1				
	360 - 156 = 204 and Yes					
	Additional Guidance					
	Angle CXD should be double angle CED			M0A0		

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 16.

3	6π	B1	

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier

	Alternative method 1: areas				
	$\pi \times 10^2$ or 100π	M1	implied by [314, 314.2]		
	$\pi \times (8 \div 2)^2$ or $\pi \times 4^2$ or 16π		implied by [50.2, 50.3] or [25.12, 25.14]		
	or $\pi \times (8 \div 2)^2 \div 2$ or $\pi \times 4^2 \div 2$	M1	92π or 84π or $92:8$ or $8:92$		
	or $16\pi \div 2$ or 8π		or 84:16 or 16:84 implies M1M1		
	(their $100(\pi)$ – their $8(\pi)$) ÷ their		dep on M2		
	8 (π)		absence of π must be consistent		
	or $92(\pi) \div 8(\pi)$ or	M1dep	condone $16(\pi)$ as their $8(\pi)$ in first calculation only, ie condone		
	their $100(\pi) \div \text{their } 8(\pi) (-1)$		(their $100(\pi)$ – their $16(\pi)$) ÷ their $16(\pi)$		
	or 12 \frac{1}{2} (-1) or 12.5 (-1)		or $84(\pi) \div 16(\pi)$,		
	2 ' /		but not their $100(\pi) \div \text{their } 16(\pi) \ (-1)$		
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$		
9	Alternative method 2: scale factor				
	$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$	M1	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4		
	or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5		accept 2:5 or 5:2 oe ratio		
	8 8 8 2.2.5		π may be present, but must be consistent in numerator and denominator		
	$(\text{their } \frac{5}{2})^2 \text{ or } \frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$		
			accept 4:25 or 25:4 oe ratio		
	$2 \times \text{their } \frac{25}{4} \ (-1) \ \text{or} \ \frac{25}{2} \ (-1)$	M1dep	oe eg $2 \div \text{their } \frac{4}{25} (-1)$		
	or 12 \frac{1}{2} (-1) or 12.5 (-1)	шиор			
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$		
	Additional Guidance is on the following page				

	Additional Guidance	
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π	
	An answer of 11.5 π with no incorrect working	M1M1M1A0
	Consistent use of πd^2 for the area of a circle gives the area of the circle as 400π , the area of the semicircle as 32π and the area of the shaded part as 368π . This also gives the answer 11.5, but scores zero	МОМОМОАО
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area	
9	eg 1	
(cont)	Big area = 100π , little area = 8π , big circumference = 20π , little circumference = 4π , $20 \div 4 = 5$	M1M1M0A0
	eg 2	
	$100\pi, 8\pi, 20\pi, 4\pi$	МОМО
	Do not award the second mark if the value of 8π comes from πd	M?M0
	This is implied by, eg, 'Area of circle = 20π , area of semi-circle = 8π '	МОМО
	$\frac{100(\pi) - 16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 18.

	Alternative method 1		
	angle QPR = 27	M1	may be seen on diagram
	angle XPS = $\frac{180 - 50}{2}$ or 65	M1	may be seen on diagram
20	angle QPR = 27 and angle XPS = 65 and angle QPS = 92 and	A1	
	angle in a semicircle is a right angle		oe accept 92 ≠ 90
	all reasons for angle facts: angles in same segment (are equal)		oe
	and angle sum of triangle (is 180) and	A1	oe
	base angles of isosceles triangle (are equal)		oe

	Alternative method 2		150
	angle SXR = 180 – 50 or 130 and angle XRS = 180 – their 130 – 27 and angle PQS = their 23	M1	may be seen on diagram angle XRS = 23
	angle $XSP = \frac{180 - 50}{2}$ or 65	M1	may be seen on diagram
20 cont	angle SXR = 130 and angle XRS = 23 and angle PQS = 23 and XSP = 65 and angle QPS = 92 and angle in a semicircle is a right angle	A1	oe accept 92 ≠ 90
	all reasons for angle facts: angles on a straight line (add up to 180) and angle sum of triangle (is 180)	A1	oe oe
	angles in same segment (are equal)		oe :
	and base angles of isosceles triangle (are equal)		ое

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 19.

	Pi or π	B1	accept a value in range [3.14, 3.142]		
	Additional Guidance				
5	Accept incorrect spelling if intention is				
	Answer ($C =$) πd			В0	
	Answer $(C =) \pi d$ $(k =) \pi$	B1			

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier 20.

	$\pi \times 10^2 - \ \pi \times 7^2$	M1	oe	
	or $100\pi - 49\pi$ or 51π		implied by 102π	
	or $\frac{1}{2} \times \pi \times 10^2 - \frac{1}{2} \times \pi \times 7^2$		method to work out front and/or back faces – must not be part of a method to work out volume (× 30)	
	or $\frac{1}{2} \times 100\pi - \frac{1}{2} \times 49\pi$		may be taken to be full of	circles
	or $\frac{1}{2} \times 51\pi$ or 25.5π			
	$2 \times \pi \times 10 \times 30$ or 600π		oe	
	or $\frac{1}{2} \times 2 \times \pi \times 10 \times 30$ or 300π		method to work out outer and/or inner curved surfaces	
	or $2 \times \pi \times 7 \times 30$ or 420π	M1	may be taken to be full circles	
	or $\frac{1}{2} \times 2 \times \pi \times 7 \times 30$ or 210π			
	or 1020π or 510π		1122π implies M1M1	
18	$\left(\frac{1}{2} \times \pi \times 10^2 - \frac{1}{2} \times \pi \times 7^2\right) \times 2$		oe	
	$\left(\frac{1}{2} \times 10^{-10} - \frac{1}{2} \times 10^{-1}\right) \times 2^{-10}$		dep on M1M1	
	$+ \frac{1}{2} \times 2 \times \pi \times 10 \times 30$	M1dep	correct method to work out total of front, back, outer curved and inner curved surfaces	
	$+ \frac{1}{2} \times 2 \times \pi \times 7 \times 30$		surfaces	
	or $2 \times 25.5\pi + 300\pi + 210\pi$			
	or 561π			
	2 × 30 × 3 or 180		implied by an answer of	$n\pi$ + 180
		M1	do not award if 180 is used as 180π	
	561π + 180	A1		
	Additional Guidance			
	150π and 105π implies use of radius for curved surface areas			max M1M0M0M1A0
	Condone use of [3.14, 3.142] for π up to M1M1M0M1A0			

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier

	segment	B1		
1	Additional Guidance			

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 22.

	Alternative method 1			
	$\frac{4}{3}\pi \times 30^3 \text{ or } 36000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$	
10	their [112 757, 113 112] + 4000 or 9π or 28.() or their [55 954, 56 839] + 4000 or $\frac{9\pi}{2}$ or [13.9, 14.21] or their [112 757, 113 112] + (4000 × 60) or $\frac{3\pi}{20}$ or [0.46, 0.4713] or their [55 954, 56 839] + (4000 × 60) or $\frac{3\pi}{40}$ or 0.23 or 0.24	M1dep		
	[13.9, 14.21] and Yes or 0.23 or 0.24 and Yes	A1		

	Alternative method 2			
	$\frac{4}{3}\pi \times 30^3 \text{ or } 36000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$	
	4000 × 15 or 60 000	M1		
	[55 954, 56 839] and 60 000 and Yes	A1		
	Alternative method 3			
10 cont	$\frac{4}{3}\pi \times 30^3 \text{ or } 36000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$	
	their [112 757, 113 112] \div 15 or 2400 π or [7517, 7541] or their [55 954, 56 839] \div 15 or 1200 π or [3730, 3790]	M1dep		
	[3730, 3790] and Yes	A1		
	Additional guidance			
	Do not award A1 if incorrect conversion of $\frac{1}{4}$ hour seen		ur seen	

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier 23.

	AD	B1		
12	Additional Guidance			

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

	angle ABC = x	M1	
	angle $BAC = x$ and alternate segment theorem	M1	
21	angle $ABC = x$ and angle $BAC = x$ and alternate segment theorem and two equal angles so isosceles (AC = BC)	A1	